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Abstract—In this paper, we present a new hybrid method that
makes the calculation of the band structure of artificial materials
with cylindrical metallic inclusions very efficient. We derive an
auxiliary problem whose band structure is that of the metallic
crystal along with several dispersionless bands. The eigenfunctions
of the auxiliary problem have continuous derivatives up to order
2. Thus, the spectrum of the auxiliary problem can be efficiently
computed using the plane-wave method. The band structure of the
metallic crystal is then obtained by extracting from the computed
results the dispersionless bands.

Index Terms—Artificial materials, band structure, metallic
crystals.

I. INTRODUCTION

I N RECENT years, a great interest has arisen in the study of
photonic crystals, after the pioneering work of Yablonovitch

et al. [1]. As is well known, these structures can have a full pho-
tonic bandgap (PBG), where the propagation of electromagnetic
waves is forbidden in every direction of space and for every po-
larization state.

The PBG regime emerges when the lattice constant is com-
parable to the wavelength of radiation. On the other hand, if the
wavelength of radiation is much larger than the lattice constant,
the photonic crystal can be characterized by an effective permit-
tivity and permeability [2], [3]. This corresponds to the effective
medium regime, and is of particular interest for artificial dielec-
tric applications. This concept was thoroughly investigated in
the 1960s, and regains interest due to current advances in micro-
fabrication techniques. At the long wavelength regime, the arti-
ficial material can be characterized using quasi-static methods
[3]. Despite that fact, and in order to predict the dependence of
the effective permittivity permeability with frequency, the cal-
culation of the fundamental bands of the periodic structure is of
great relevance.

The propagation of electromagnetic waves in periodic struc-
tures is described by means of a band theory. The computa-
tion of the band structure is, in general, very intensive. Several
methods have been proposed for the effect, i.e., the order-
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method [4], the transfer matrix method (TMM) [5], finite-dif-
ference methods [6], plane-wave method [7], [8], etc.

The order- method is based on the finite-difference time-
domain (FDTD) method. The time-dependent Maxwell equa-
tions are solved for given initial conditions and boundary con-
ditions. The spectral intensity, whose peaks correspond to the
resonant frequencies, is then computed using a Fourier trans-
form. An important feature of this method is that the computa-
tional effort scales linearly with the size of the system.

The TMM is a multiscattering method, and allows for the
computation of the complex band structure and reflection-trans-
mission coefficients in truncated crystals.

The plane-wave method involves the expansion of the electro-
magnetic fields in a Fourier-like series. The Maxwell equations
are reduced into a matrix eigensystem. The eigenvectors rep-
resent the electromagnetic Floquet modes and the eigenvalues
represent the respective resonant frequencies. Nonetheless, this
method is restricted to dielectric crystals since it assumes the
medium permittivity to be finite and nondispersive.

Indeed, the plane-wave method suffers from convergence
problems that are particularly acute for high dielectric contrasts,
near close-packing ratios, and high frequencies [8], [9]. A
crystal with perfect electric conductors (PECs) can, in prin-
ciple, be regarded as the limit situation of a dielectric crystal
with infinite permittivity inclusions. However, as the dielectric
contrast in this configuration is infinite, the plane-wave method
fails completely.

The slow convergence of the plane-wave method is related to
the discontinuity of the dielectric constant and, consequently,
of the electromagnetic fields. These discontinuities cause the
plane-wave expansions of the pertinent physical quantities to
fluctuate intensely around the dielectric interfaces, in a mani-
festation of the Gibbs phenomenon. Thus, a very large number
of plane waves may be required for the accurate computation
of the band structure of a dielectric crystal. This is memory and
time consuming since the number of operations for diagonal-
izing a Hermitian matrix scales as the cube of the dimension.

In metallic crystals, the discontinuous behavior of the elec-
tromagnetic fields is even more critical. Indeed, if the inclusions
are perfect conductors, the boundary conditions impose not only
the normal component of the electric field to be discontinuous,
but also the tangential component of the magnetic field. In this
paper, we prove that, in spite of the referred irregular behavior,
it is possible to compute very efficiently the band structure of
metallic crystals with PEC inclusions using a hybrid plane-wave
integral-equation-based method. The analysis of this paper is
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Fig. 1. Unit cell in the square lattice case. The metallic inclusion isD and the
lattice primitive vectors are a and a .

restricted to cylindrical inclusions with arbitrary cross section.
The general three-dimensional and dielectric cases [10] will be
presented elsewhere.

The proposed method is described below. To begin, we in-
troduce an auxiliary extended problem. The band structure of
this problem contains that of the metallic crystal, along with a
set of dispersionless flat bands. The flat bands are associated
to the resonant frequencies of the interior Dirichlet problem in
a metallic waveguide with the same cross section as a generic
inclusion. We prove that the extended problem is equivalent
to an integral-differential eigensystem. The eigenfunctions of
this eigensystem are smooth and, thus, can be expanded into
a fast converging Fourier series. In this way, the band struc-
ture of the extended problem can be efficiently computed using
the plane-wave method. As the flat bands do not depend on the
wave vector, they can be easily extracted from the band struc-
ture of the extended problem, thus leaving the band structure
of the metallic crystal. The proposed method is partially related
to the boundary integral resonant method [11], [12], which is
utilized for the calculation of the resonant modes in metallic
waveguides.

Previous work on the analysis of metallic crystals includes
[13], where the band structure of an array of PEC cylinders is
calculated using a generalized Rayleigh identity method, [14]
which uses the TMM method, and [15], which studies the dis-
persive case.

This paper is organized as follows. In Section II, we present
the formulation of the method. In Section III, we present numer-
ical results. In Section IV, we present conclusions.

II. FORMULATION

We consider a two-dimensional lattice of metallic cylinders
in air. The lattice primitive vectors are and . We take the
unit cell as the parallelogram : .
The square lattice case is depicted in Fig. 1. Inside the unit cell
is an infinite PEC metallic cylinder with arbitrary cross sec-
tion . We denote the inclusion’s boundary by , and the
corresponding outward unit normal vector by . The periodic
(metallic) crystal is obtained by translations of along the prim-
itive vectors. For convenience, we introduce the reciprocal lat-
tice [16] primitive vectors and , defined by the relations

, where is the Kronecker delta symbol.
The objective is to compute the Floquet electromagnetic

modes. We can assume without loss of generality that the

wave vector is normal to the cylinders axes. In the general
case, the Floquet wave solutions can be constructed from the
solutions of the on-plane case, in analogy with the propagation
of electromagnetic waves in PEC metallic waveguides [17].
In fact, the metallic crystal can be regarded as a metallic
waveguide with infinite inner conductors. From this remark, it
is evident that the metallic crystal supports infinite transverse
electromagnetic waves and, in addition, -polarized waves
(transverse magnetic to ) and -polarized waves (transverse
electric to ).

In the on-plane case, the geometry of the problem is intrin-
sically two-dimensional, and the coordinate along the cylinder
axes can be discarded. Thus, we denote a generic observation
point by .

We put in the -polarization case, and in
the -polarization case. In order to be a Floquet wave, must
satisfy

(1)

on -polarization (2a)

on -polarization (2b)

is periodic (3)

where is the wave vector, is the normal
derivative, is the (transversal) gradient, is the free-
space wavenumber, is the angular frequency of radiation, and

is the velocity of light in vacuum. In the -polarization case,
satisfies the Dirichlet boundary condition (2a) at the inclu-

sions’ surface, while in the -polarization case, it satisfies the
Neumann boundary condition (2b). The superscript “ ” in these
equations indicates that the corresponding field quantities are to
be evaluated at the outer side of .

For a given in the reciprocal space, system (1)–(3) has non-
trivial solutions for an infinite numerable set of wavenumbers.
We can write , being the previous function multi-
valued. Each branch of the function yields a band. The
objective is to determine the band structure.

In the general off-plane case, the wave vector has a longi-
tudinal component, and the dispersion characteristic satisfies

, being the notation evi-
dent. Thus, in PEC metallic crystals, the band structure of the
on-plane case determines the band structure of the off-plane
case.

A. Extended Problem

In (1), is defined only outside the PEC inclusions. Never-
theless, can be mathematically extended to the interior of the
inclusions as a continuous solution of (1) in all space. In the

-polarization case, the last assertion is clear: we just need to
define inside the inclusions. The -polarization case is a
bit more elaborated and is treated as follows. We can obviously
restrict the analysis to the unit cell. Let be calculated at
the outer side of , and be calculated at the inner side
of the . We then define inside as the solution of (1) that
satisfies the boundary condition on (i.e., is the
solution of an interior Dirichlet problem).

We introduce an extended problem, whose solutions are the
continuous functions that verify (1)–(3) in all space (including
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the interior of the inclusions). The objective will become clear
in the following section. The Floquet solutions of the extended
problem are the Floquet solutions of the metallic crystal, (ex-
tended continuously to the interior of , as explained earlier),
along with a set of internal modes that vanish in the exterior of
the inclusions.

As the solutions of the extended problem are continuous, the
internal modes vanish at the boundary of the metallic inclusions,
independently of the wave polarization. Therefore, the internal
modes can be identified with the Dirichlet modes of a metallic
waveguide with the same cross section as a generic inclusion.
The internal modes are independent of the wave vector and wave
polarization.

Thus, the band structure of the extended problem is equal to
the band structure of the metallic crystal, together with a set
of flat bands that correspond to the resonant frequencies of the
interior Dirichlet modes. We can obtain the band structure of
the metallic crystal by extracting the flat bands from the band
structure of the extended problem. Alternatively, we can check
if a given resonant frequency belongs to the band structure of the
metallic crystal by testing if the corresponding eigenfunction is
zero in (i.e., in the unity cell excluding the inclusion).

The eigenfunctions of the extended problem are continuous,
i.e., . On the other hand, the first-order
derivatives are discontinuous on . This causes a Fourier ex-
pansion of to converge slowly. To circumvent this situation,
we derive in the following section an integral-differential eigen-
system with the same band structure as the extended problem,
but with smoother eigenfunctions.

B. Band Structure of the Extended Problem

Let be an arbitrary extended solution of (1)–(3), i.e., con-
tinuous in all space. We consider an auxiliary function that
satisfies

(4a)

is periodic (4b)

We note that as is continuous, has continuous derivatives
up to the second order in the unit cell (including the boundary of
the inclusion ). In what follows, we prove that is solution
of an integral-differential eigensystem.

To begin with, we define

(5)

From (1)–(5), we obtain that, for an arbitrary point in

in (6a)

is periodic (6b)

Although (6a) is a homogeneous equation, is nontrivial
because, on , its normal derivative is discontinuous, i.e.,

(although is continuous,
i.e., ). These results follow from the fact
of being a continuous function with discontinuous normal
derivative on the inclusion boundary, and having continuous
derivatives up to order 2.

In order to obtain an integral representation for , we intro-
duce the lattice Green function solution of

(7a)

is a periodic function (7b)

In (7), is an observation point, is a
source point, is a multiindex of arbitrary integers,
and is a lattice point. The details on the com-
putation of the Green function are presented in the Appendix.

From (6) and (7), we obtain the following identity:

(8)
where the prime indicates that the gradient operates
over the -coordinates. From (6b), we have that

for every lattice point . Therefore,
the right-hand side of the above equation simplifies to

(9)

Next, we integrate (in order to ) both sides of (9) over the unit
cell . The integral of the right-hand side is . The integral
of the left-hand side term can be transformed into two surface
integrals: one over and the other over the boundary of .
This last integral vanishes since, from (6b) and (7b), the term
inside the divergence operator in (9) is a periodic function in .
Hence, we obtain that

(10)

In (10), the terms in brackets are the jump discontinuities of
and of its normal derivative at the boundary of the inclusion.
Since , we conclude [remembering the definition of in
(5)] that

(11a)

(11b)

In the former equation, is a density defined over . The
second term of the right-hand side of (11a) is a (pseudoperiodic)
single-layer potential.

Using (2) and (11a), we easily obtain an integral equation for
in terms of . In fact, if , we have

-pol. (12a)

-pol.

(12b)

The integral equation (12b) was obtained using the jump re-
lations of the single layer potential [18]. These jump relations
state that the normal derivative of the single-layer potential is
discontinuous, i.e., its value calculated from the outer side of
is different from the value calculated from the inner side. In fact,
the normal derivative calculated from the exterior of is equal
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to the two right-most parcels in (12b), while the normal deriva-
tive calculated from the interior is obtained from the former by
replacing the term by , [18].

We define the integral operators (over ) , , and
as follows:

(13a)

(13b)

From (12), we conclude that, provided and are invert-
ible, we have

-polarization

-polarization (14a)

Finally, from (4) and (11a), we conclude that is a solution
of the following homogeneous equation:

(14b)

is periodic (14c)

Thus, we have proven that to every solution of the extended
problem corresponds a solution of the integral-differential
system (14). The mapping that transforms into is defined
by (11). Reciprocally, it is easy to verify that to every solution

of the integral-differential system (14) corresponds a solution
of the extended problem. The respective inverse mapping is

defined by (11a) and (14). Furthermore, function is a non-
trivial solution of the extended problem if and only if the cor-
responding is a nontrivial solution of (14). Hence, it follows
that both problems are equivalent.

The integral-differential system (14) is also an eigenvalue
problem. In fact, for a given wave vector , it has nontrivial so-
lutions only for certain wavenumbers . As pointed out above,
the nontrivial solutions of system (14) lead to nontrivial solu-
tions of the extended problem (and reciprocally). Thus, we con-
clude that both problems have the same band structure. How-
ever, the eigenfunctions of (14) are much smoother than the
eigenfunctions of the extended problem. In fact, they have con-
tinuous derivatives up to order two (inclusive), while, in general,
the eigenfunctions of the extended problem have discontinuous
first-order derivatives. Due to the referred regularity, the eigen-
functions of (14) can be expanded into a fast converging Fourier
series. In this way, the band structure of (14) can be efficiently
calculated by means of the plane-wave method.

C. Numerical Solution of (14)

Since is a smooth Floquet wave, we expand it in a Fourier
(pseudoperiodic) series

(15)

In (15), is a multiindex of arbitrary integers, is
a constant, and is a plane wave

(16a)

(16b)

where is the area of the unit cell. Replacing
(15) in (14b), multiplying the resulting equation by (where

is an arbitrary multiindex, and the symbol “ ” refers to complex
conjugation), and integrating both sides over the unit cell , we
conclude that

(17a)

(17b)

Using (A2), given in the Appendix, we can integrate (17b)
explicitly. We find that

(18)

Inserting (18) into (17a), we now obtain

(19)

In the previous equation, we defined the internal product
, where and are arbitrary functions

defined on the boundary of the inclusion . Using (14) and
(15), we obtain the final result

-pol.

(20a)

-pol.

(20b)

Equation (20) defines an eigensystem with eigenvalues .
To solve it numerically, we truncate the Fourier series (15) and
discretize the integral operators (13) using, for example, the
Nyström method, which is particularly efficient in the analysis
of two-dimensional problems [18].

D. Band Structure of the Metallic Crystal

As referred in Section II-A, the band structure of the metallic
crystal is obtained from the band structure of the extended
problem by removing the flat bands. The band structure of the
extended problem is calculated solving the matrix eigensystem
(20).

The flat bands are associated to the resonant frequencies of
the internal Dirichlet modes. When the inclusion area fraction
is low, the internal resonant frequencies are high and, conse-
quently, do not interfere with the first bands of the metallic
crystal. The flat bands can be extracted from the band structure
of the extended problem using one of the following techniques.

• The simpler one consists of directly detecting the disper-
sionless flat bands in the computed band structure. Gen-
erally, this approach works well, but some ambiguity may
arise in metallic crystals with very flat bands.

• A second alternative consists of precalculating the internal
mode frequencies, using the fact that the internal modes
vanish outside the inclusion (for canonical inclusion cross
sections, these frequencies may even be known analyti-
cally). This approach is developed in what follows, and is
partially related to results from [11].

In a first step, we compute the resonant frequencies of the
extended problem with an arbitrary - and -polarization (in-
dependently of the metallic crystal polarization case; this is so
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because, as we have referred to before, the internal resonant fre-
quencies are common to both polarization cases).

From the eigenvectors of (20a), we obtain the eigenfunctions
of (14), which are given by the Fourier expansion (15). Let be
one of these eigenfunctions. Suppose that has wavenumber

and that we want to test whether or not corresponds to an
internal mode of the extended problem. From (11a) and (14a),
the mode of the extended problem associated to is given by

(21)

Thus, the wavenumber corresponds to an internal mode if and
only if given by the previous formula vanishes over .
From the jump relations of the single-layer potential [18], the
normal derivatives of over are given by

(22)

where is the normal derivative of on the outer side
of , and is the normal derivative of on the inner
side of .

If the wavenumber corresponds to an internal mode, it
is clear from the above discussion that and

. Similarly, as every noninternal solution of the
-polarization extended problem vanishes in the interior of the

metallic inclusions, the noninternal modes satisfy
and .

From the preceding considerations, we propose the fol-
lowing criterion to decide whether the resonant wavenumber

does or does not correspond to an internal mode. A resonant
wavenumber is labeled as internal if the norm [with respect
to the internal product on defined in (19)] of
is much smaller than the norm of . If the norm of

is much is greater than , the mode is labeled
as noninternal. If the norms of the normal derivatives have
approximately the same magnitude, there is some ambiguity.
The ambiguity is, in general, due to a lack of numerical
resolution (although some degeneracy may occur if some
noninternal mode has a resonant frequency very close to that of
an internal mode). To remove the ambiguity, if it occurs at all, it
is, in general, sufficient to increase the number of plane waves
in expansion (14). We note, however, that we only need to
accurately determine the first few internal resonant frequencies,
more precisely, those that lie in the frequency range where we
wish to determine the band structure of the metallic crystal.
Every resonant wavenumber labeled as internal (if any) is
stored in memory.

In a second step, we calculate the band structure of the
metallic crystal by performing the usual sweeping of the
Brillouin zone. Toward this end, the eigensystem (20) is solved
for several wave vectors . The internal resonant frequencies
(which were previously stored in memory) are removed from
the band structure yielded by (20). It must be pointed out
that, due to the involved numerical approximations, the stored
internal frequencies are not exactly reproduced in the calculated
band structure. In fact, the removed eigenvalues are those that
are closer to the stored internal frequencies.

Fig. 2. Band structure for a square array of circular cylinders with fill
fraction 21.2%. E-polarization (dashed line) and H-polarization (solid line)
superimposed on the results from [13].

III. NUMERICAL RESULTS

In this section, we present numerical examples that illustrate
the application of the described method.

The results presented here were calculated using 49 terms in
the plane-wave expansion (15). The integral operators, defined
by (13), were discretized using the Nyström method with 32
points on the inclusion’s boundary. For each in the Brillouin
zone, the computation time is less than 1 s on a Pentium III
800 MHz.

In the first example, we calculate the band structure of a
square array of PEC circular cylinders in air. The lattice con-
stant is and the cylinder area fraction is 21.2%. In Fig. 2, we
present the first few bands of each polarization, superimposed
on data extracted from [13] (the crosses correspond to the -po-
larization points extracted from [13], while the stars correspond
to the -polarization points). The inset of Fig. 2 represents the
Brillouin zone of the square lattice. Point is the origin of
the -space, and points and are given, respectively, by

and . The computation time of
the data extracted from [13] is 16 h on a DEC Alpha Worksta-
tion. As illustrated in Fig. 2, the calculated results agree well
with those of [13].

In the -polarization case, the cutoff free-space wavelength
is , i.e., . Thus, for this polar-
ization, only wavelengths smaller than 1.49 can propagate in
the metallic crystal. In the long wavelength limit, the medium
can be modeled as plasma with negative permittivity.

On the other hand, in the -polarization case and long wave-
lengths, the medium behaves as a natural medium characterized
by a permittivity dyadic and magnetic permeability. Thus, the
artificial medium can be used as a polarizer that inhibits -po-
larization and is transparent to -polarization.

In order to investigate the accuracy and convergence rate of
the proposed method, we have calculated the relative error in
the frequency of the first internal mode, as a function of ,
where is the number of plane waves in expansion (15).
Since, in the present example, the inclusion’s cross section is
circular, the referred frequency is known in closed analytical
form [17]. For the fill fraction 21.2%, the corresponding nor-
malized wavenumber satisfies . We have compared
this value with that obtained from the numerical results. We
discretized the integral operators with 32 points on and
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Fig. 3. Relative error (in percentage) in the resonant frequency of the first
internal mode as a function of the square root of the number of plane waves.

Fig. 4. Band structure for a triangular array of elliptical cylinders with a fill
fraction of 35%. E-polarization (dashed line).H-polarization (solid line).

considered that . In the -polarization case, the
first internal frequency is the sixth resonant frequency of the
extended problem, while in the -polarization case, it is the
ninth resonant frequency. The calculated relative error is shown
in Fig. 3. The accuracy of the computed results is excellent. The
relative error is less than 0.6% for . The convergence
rate is also very good, irrespective of the polarization case.

In the second example (Fig. 4), we consider a triangular lat-
tice, with lattice constant (i.e., the primitive vectors and

make an angle of 60 and have a norm ; we assume that
is oriented in the -axis direction). The inclusions are now

metallic cylinders with an elliptical cross section. The area fill
fraction is 35%, and the axis ratio of the elliptical cross section
is two. The Brillouin zone of the triangular lattice is the hexagon
shown in the inset of Fig. 4. Also shown are the points (the
origin of the -space), , and is the upper right
corner of the regular hexagon. The larger axis of the elliptical
cross section is oriented in the -direction.

The free-space cutoff wavelength for the -polarization
case increases relatively to the previous example, and is now

. There is no bandgap in the -polar-
ization case and, for long wavelengths, the medium behaves
as an anisotropic effective medium. We verified that, except
near the -direction, there is a bandgap between the first
and second bands of the -polarization. The reason for the
bandgap absence in the -direction seems to be that the
elliptical cylinders form to a first approximation a guided-wave
structure (of parallel metallic plates) oriented in the -direc-
tion. This is so because the ellipse larger axis is oriented in the

-direction.

IV. CONCLUSIONS

We have presented a new method for the efficient calcula-
tion of the band structure of arrays of PEC cylinders with ar-
bitrary cross section. We derived an auxiliary integral-differen-
tial eigensystem that contains the band structure of the metallic
crystal. It was shown that, due to the smoothness of eigenfunc-
tions of the auxiliary problem, its band structure could be com-
puted very efficiently using the plane-wave method. In this way,
we have reduced the problem of calculating the band structure
of PEC metallic crystals to a conventional matrix eigensystem.
This approach is far more efficient than other root-searching
methods presented in the literature. Typical computation times,
even for highly concentrated systems, and a high-accuracy spec-
ification for the first few bands, are less than 1 s in a standard
personal computer. In fact, due to the smoothness of the eigen-
functions, the plane-wave expansion method converges fast, and
only a few plane waves are needed to yield accurate results. The
theoretical results were validated with numerical results avail-
able from the open literature.

The extension of the proposed method to the three-dimen-
sional problem, and dielectric crystals, will appear shortly.

APPENDIX

In this section, we present closed-form formulas for the solu-
tion of (7). That solution corresponds to the case of the
more general equation

(A1a)

is a periodic (A1b)

where is a given wavenumber. We refer to as the “lattice
Green function.” A well-known representation of this pseudope-
riodic Green function is given in [19]

(A2a)

(A2b)

where is a multiindex of integers, is the area
of the unit cell, and . The convergence rate
of (A2) is poor. Next, we derive an alternative representation for

with exponential convergence. The final result is

(A3a)

(A3b)

where , is the projection of onto
the -direction, and , , and are, respectively, the
projections of , , and onto a unit vector normal to . In
(A3a), the sum with index “ ” is the shorthand notation for the
sum of two terms: one with the “ ” sign and the other with the
“ ” sign.
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Formula (A3) is only valid for . However, since
is a pseudoperiodic function, we can relate calculated in

an arbitrary point , with calculated in a point obtained
from by translations along the primitive vectors. As we can
always choose such that it satisfies , can
be evaluated in an arbitrary point of space.

The demonstration of (A3) is as follows. The Green func-
tion is the potential from a two-dimensional array of point
sources, with phase shifts imposed by . The two-dimensional
array can be regarded as the superimposition of one-dimensional
arrays point sources. The potential from each one-dimensional
array is a “layer Green function.” This “layer Green function”
is the usual periodic Green function used in the analysis of
single-periodic structures in a two-dimensional space [20]. The
Green function can thus be written as a sum of “layer Green
functions.” Using the spectral representation of the “layer Green
function” [20], we can verify that the sum of the layer potentials
corresponds to two geometric series and, thus, can be evaluated
in closed form. The result is (A3).

The representation (A3) converges exponentially, except
when . Nevertheless, it is obvious that, by interchanging
the roles of and in (A3), we obtain an alternative
representation for . This second representation is analogous
to the first one, but the region of slow convergence differs. In
fact, it can be verified that for every in the unit cell, at least
one of these representations converges exponentially, except if

. At the origin, diverges, and has the same logarithmic
singularity as the free-space Green function. Near , we
can write , where is the free-space Green
function and is a regular term. Alternatively, we can
accelerate the convergence of (A3) using the usual techniques
employed for the “layer Green function” [20]. In fact, the first
term of (A3a) (the one that converges slowly) is precisely the
“layer Green function.”
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